技术文章—金属外壳屏蔽 EMI
发布时间: 2024-01-05 作者: 乐鱼网站app下载

  一个项目在计划阶段就要考虑屏蔽问题,这样花费在屏蔽措施上的成本才会最低。若等到问题暴露出来再去查漏补缺,往往需要付出相当大的代价。屏蔽措施往往带来费用和仪器重量的增加,若能以其他EMC方式加以解决,就最好能够降低屏蔽。(言下之意屏蔽是最后一招)

  2、使电气部件及线路尽量靠近地层(减少层间信号的电磁干扰、地层能吸收部分干扰 )这样,即使是需要加屏蔽,也能够更好的降低对屏蔽效能(SEshiedlingeffectiveness)的需求。

  屏蔽相当于一个滤波器,放置于电磁波的传播路径上,对其中的一部分频段形成高阻抗。阻抗比越大,屏蔽效能越好。对于一般金属,0.5mm的厚度就能对1MHz的电磁波产生较好的屏蔽效果,对100MHz能有非常好的屏蔽效果,问题就在于薄层金属屏蔽对1MHz以下或孔隙来说,屏蔽效果就不行了,本文重点介绍这方面。

  (2) 矩形(或不规则)的屏蔽外形,能够尽可能的避免频率共振;正方形的外壳往往会造成共振;

  但总的来说,电路板一般位于屏蔽体内,其元器件、线路等都会改变预期的共振频率点,所以不必太操心。

  工程上定义从表面到电流密度下降到表面电流密度的0.368(即1/e)的厚度为趋肤深度或穿透深度Δ:

  上图:不同频率下三种金属的趋肤效应深度(频率越高,深度越浅,越趋肤);趋肤效应以传导的角度看,是希望趋肤深度深的,那表示导线的利用率高;但是对于屏蔽,是希望趋肤深度浅的,这样就能以较薄的金属屏蔽更多的电磁频段;50Hz的趋肤深度5~15mm,很难屏蔽……

  用于屏蔽的金属应有良好的导电及导磁性能,厚度根据干扰的最低频率所产生的趋肤深度来定。一般1mm的低碳钢板或者1μm的镀锌层就能满足一般的应用。(这也是实际中常看到机箱壁上镀锌的原因)

  如果屏蔽体的整个壳体是无缝无孔的,那么对于30MHz的电磁波来说,要达到100dB的衰减效果不是难事。问题就在于他们不是无缝无孔的:

  在一个完美的屏蔽壳体上开一个洞,相当于构成一个半波共振缝隙天线,屏蔽效能SE与孔的最大尺寸d、电磁波波长λ关系如下:

  那么对于之前提到的30MHz,波长10m,假设有一个USB口(孔径对角线mm),换算下来SE为54dB,d越大,SE越小。我们常用到的电磁波频段:

  要达到40dB的SE,常常要用导体垫圈、弹簧夹指来进行密封,注意内部元件与屏蔽罩的间距、数据总线与开孔和缝隙之间的距离。

  还要注意,当屏蔽体中有电流,且电流的前进方向上有孔缝挡路,迫使电流绕行时,将引起孔缝类似天线而发射磁场,通过孔缝变化的电压产生磁场。

  6、低频磁场的屏蔽采用高磁导率的合金材料(如非晶合金、坡莫合金),按一定规格制成屏蔽罩,可大幅度减小磁场影响。

  11、用喷漆或电镀的塑料因为开模塑料美观轻便,所以时常使用,对这种情况,一般在塑料杯面喷涂导电材料,因为导电层厚度不可能太厚(微米级),实际效果不怎么样。对于二类电器(class II),还可能增加静电放电(ESD)的可能性。二类电器:这类电器采用双重绝缘或加强绝缘,没有接地要求。

  12、非金属屏蔽如碳纤维或导电聚合物(导电塑料),但是无论如何其SE都不及金属的好。

  关键字:EMI编辑:muyan 引用地址:技术文章—金属外壳屏蔽 EMI

  任何产品只要使用公共电网或带有电子电路,都必须满足 EMC ( 电磁兼容性 ) 要求。而在EMC中, EMI的问题始终是工程师关心的话题。因为EMI的远场测试只能知道产品符不符合EMI的认证要求。一旦不符合标准要求,它没办法提供超标的辐射源的位置和传播途径,这样工程师就无从下手做整改。下面就随测试测量小编共同来了解一下相关联的内容吧。 EMI辐射近场测试是一种相对量测试,它可以把被测件的测试结果与基准件的测试结果作比较,以预测被测件通过一致性测试的可能性,并且通过探头的检测能快速精准的告诉工程师,严重的辐射问题到底是来自于 USB、LAN 之类的通信接口,还是来自壳体的缝隙,或来自连接的电缆乃至电源线,帮助工程师查找和定位辐射源

  开关式稳压 电源 的体积小、重量轻、效率高、稳压范围宽且安全可靠,在很多电子设备中被采用。但是,它像其他电路一样同样存在一些问题,如控制电路复杂,较高的工作频率会对电视机、收音机等产生电磁辐射 干扰 使得收音机出现噪声、电视机出现噪波点,甚至还会通过反馈干扰其他电子设备的正常工作。 1.超音频振荡的干扰问题 开关式稳压 电源 的工作频率多为20-100kHz,属于超音频范围。作为该电源的开关调整器件晶体管或场效应晶体管以相应的频率工作在导通与截止状态,振荡波形近似于方波(还存在过冲),根据傅里叶分析法能进行分解,即得到直流分量、基波和高次谐波,基波的能量最大,其次是三次、五次、七次……等等。 2.无线电广播与电磁干扰的关系

  开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰大多数来源于电网的抖动、雷击、外界辐射等。 1.开关电源的EMI源 开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰大多数来源于电网的抖动、雷击、外界辐射等。 (1)功率开关管 功率开关管工作在On-Off快速循环转换的状态,dv/dt和di/dt都在急剧变换,因此,功率开关管既是电场耦合的主要干扰源,也是磁场耦合的主要干扰源。 (2)高频变压器 高频变压器的EMI来源集中体现在漏感对应的di/dt快速循环变换,因此高频变压器是磁场耦合的重要干扰源。 (3

  前言 在日新月异的多媒体时代,便携式电子科技类产品,如智能电线、PMP、DSC、DVC、NB等多媒体产品,对声音质量的要求越来越严格。另外,由于此类产品为电池供电,除了要求音质的再突破外,也要求整体效率的提升,以达到高效、低功耗的设计目标。 此类产品的音频模块中,除了输入端的信号源和输出端的喇叭或耳机外,音频放大器是一个很重要的角色。目前广   泛用于便携产品的音频放大器有AB类和D类两种。通常,AB类放大器可提供好的音质,但效率欠佳,耗电较大;而D类放大器具有高效、低温升效应和高输出功率等特点。 理论分析 AB类放大器的工作原理类似于线性调节器,效率差而

  抑制 /

  在抑制由信号线发出的电磁噪声辐射时,设计人员常常会使用T型或π型结构的EMI滤波器。这些滤波器通过电容器将信号线连接到接地层,由此,信号中不受欢迎的成分或噪声就会通过滤波器流入地面。也就是说,这样的形式通过把噪声成分“丢”到地面来降低电磁噪声辐射。 然而,在使用此类EMI滤波器时必须格外小心,因为如果接地层阻抗过高,被丢弃的高频成分就可能在接地层产生电势差,进而形成新的噪声辐射源。从这个意义上说,这些滤波器只能用于接地层阻抗非常低的情况。问题正如Murata Manufacturing公司所指出的:“许多情况下,在手机等小型设备中不太可能有足够大面积的接地层。事实上,人们在开发这些设备的过程中发现,确实存在尽管插入了EMI滤波器但

  问:磁珠和电感在解决EMI和EMC方面的作用有啥不一样的区别,各有什么特点,是不是使用磁珠的效果会更好一点呢? 答: 从原理上来说,磁珠可等效成一个电感,所以磁珠在EMI和EMC电路中就等于一个抑制电感的作用,最大的作用是对高频传导干扰信号进行抑制。磁珠可等效成一个电感,但这个等效电感与电感线圈是有区别的,磁珠与电感线圈的最大区别就是,电感线圈有分布电容。因此,电感线圈就等于一个电感与一个分布电容并联。如图1所示。图1中,LX为电感线圈的等效电感(理想电感),RX为线圈的等效电阻,CX为电感的分布电容。 理论上对传导干扰信号进行抑制,要求抑制电感的电感量越大越好,但对于电感线圈来说,电感量越大,则电感线圈的分布电容也越大,两者的作用

  和EMC问题上的区别与特点 /

  我们知道,造成设备性能降低或失效的电磁干扰必须同时具备三个要素,首先是有一个电磁场所,其次是有干扰源和扰源,最后就是具备一条电磁干扰的耦合通路,以便把能量从干扰源传递到受干扰源。因此,为解决设备的电磁兼容性,必须围绕这三点来分析。正常的情况下,对于EMI的控制,我们主要是采用三种措施:屏蔽、滤波、接地。这三种方法虽然有着独立的作用,但是相互之间是有关联的,良好的接地能够更好的降低设备对屏蔽和滤波的要求,而良好的屏蔽也可以使滤波器的要求低一些。下面,我们来分别介绍屏蔽、滤波和接地。 1屏蔽 屏蔽可以有明显效果地的抑制通过空间传播的电磁干扰。采用屏蔽的目的有两个,一个是限制内部的辐射电磁能量外泄出控制区域,另一个就是防止外来的辐射电磁能

  控制方法:屏蔽、滤波、接地一 /

  Diodes 公司 (NASDAQ:DIOD) 今日宣布推出 AP64350Q/AP64351Q/AP64352Q 系列用于负载点 (POL) 应用的 3.5A 同步降压转换器,且符合汽车规格。AP6435xQ 具备低静态电流与 3.8V 至 40V 的宽输入电压范围。本系列装置开发用于汽车应用,包括信息娱乐系统、仪表板灯组、远程信息、先进驾驶辅助系统 (ADAS) 与前照灯。 AP6435xQ 完全整合 75mΩ 高侧电源 MOSFET 和 45mΩ 低侧电源 MOSFET,提供高效率的 DC-DC 降压转换功能。AP6435xQ 采用闸极驱动器/自举式设计,使装置可在低压差 (LDO) 模式下运作,允许接近 100%

  噪声 /

  设计规则100条

  ADI世健工业嘉年华——深度体验:ADI伺服电机控制方案

  解锁【W5500-EVB-Pico】,探秘以太网底层,得捷电子Follow me第4期来袭!

  在化合物半导体发展热潮下,欧洲半导体巨头意法半导体(STMicroelectronics,以下简称“ST”)的动向非常关注。凭借早期与某全球知名电动汽 ...

  据报道,随着台湾巨头台积电在行业需求旺盛的情况下达到满负荷生产,AMD 正在寻找其他 CoWoS 供应商。在台积电忙着为英伟达(NVIDIA)供 ...

  高通公司(Qualcomm)昨天在美国消费电子展(CES)前夕发布了下一代骁龙 XR 平台--XR2+ Gen 2。新的SoC承诺在每秒 90 帧的情况下可向 ...

  “后摩尔时代,放过石墨烯 (Graphene)吧。”这是两年前中国科学院院士、北京石墨烯研究院院长刘忠范说过的话。石墨烯,一个“新材料之王 ...

  年底 3nm 产能利用率达 80%,消息称台积电将接下英伟达、高通等公司的 N3E 订单

  1 月 4 日消息,根据韩媒 The Elec 报道,英伟达(NVIDIA)、AMD、高通(Qualcomm)和联发科(MediaTek)等客户今年向台积电下单,购 ...

  SEMI:2024 年月产晶圆要破 3000 万片大关,中国引领半导体产业扩张

  Sakuú公司利用3D打印机制造EV固态电池 体积减少达50%/重量减轻30%

  Bourns® Multifuse® 过流/过温保险丝系列再升级, 推出 MF-ASML/X 系列,具有高达 0.75 A 额定功率

  力源&安森美有奖直播:RSL15 - 安森美更高效更智能更安全的 BLE 5.2 蓝牙芯片

  站点相关:市场动态半导体生产材料技术封装测试工艺设备光伏产业平板显示EDA与IP电子制造视频教程